If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2-9w-240=0
a = 1; b = -9; c = -240;
Δ = b2-4ac
Δ = -92-4·1·(-240)
Δ = 1041
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{1041}}{2*1}=\frac{9-\sqrt{1041}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{1041}}{2*1}=\frac{9+\sqrt{1041}}{2} $
| -6+2(x+5)=34 | | 10^6+10^-7=y | | X^2+(y-14)^2=144 | | (X-1)^2+(y-4)^2=34 | | 5x^2-90=10+4x | | -2(x+10)+155=25+30 | | 1/25=5^x | | 10=b^-1 | | 5t-13=4t-1 | | 8-6x+7=6-6x | | 10-5x=3-2x+7-3x | | (X-3)^2+y^2=4 | | 2p^2-16p+26=2 | | 3x^2+18x+22=7 | | 5n^2+20n+22=7 | | 17=7+x/4 | | 5n+20n+22=7 | | 5n^2-10n-33=7 | | 2y-9(18y-7)=3263 | | 5x^2-20x+19=4 | | 215=280-x | | -v+203=271 | | 20(t)=-16t^2+40t+6 | | -v+203=207 | | 2x+10+5x+10=180 | | 20=-16t^2+40t+6 | | Y=x^2+10x-96 | | 3(y+1)^2-5=43 | | 3x-12+6=5x+-6 | | 2x+10,5x+10=180 | | 2x+105x+10=180 | | 11=4d-1 |